Estimating Heterogeneous Bounds for Treatment Effects under Sample Selection and Non-response

09/09/2022
by   Phillip Heiler, et al.
0

In this paper we propose a method for nonparametric estimation and inference for heterogeneous bounds for causal effect parameters in general sample selection models where the initial treatment can affect whether a post-intervention outcome is observed or not. Treatment selection can be confounded by observable covariates while the outcome selection can be confounded by both observables and unobservables. The method provides conditional effect bounds as functions of policy relevant pre-treatment variables. It allows for conducting valid statistical inference on the unidentified conditional effect curves. We use a flexible semiparametric de-biased machine learning approach that can accommodate flexible functional forms and high-dimensional confounding variables between treatment, selection, and outcome processes. Easily verifiable high-level conditions for estimation and misspecification robust inference guarantees are provided as well.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro