Estimating Graphlet Statistics via Lifting

02/23/2018
by   Kirill Paramonov, et al.
0

Exploratory analysis over network data is often limited by our ability to efficiently calculate graph statistics, which can provide a model-free understanding of macroscopic properties of a network. This work introduces a framework for estimating the graphlet count - the number of occurrences of a small subgraph motif (e.g. a wedge or a triangle) in the network. For massive graphs, where accessing the whole graph is not possible, the only viable algorithms are those which act locally by making a limited number of vertex neighborhood queries. We introduce a Monte Carlo sampling technique for graphlet counts, called lifting, which can simultaneously sample all graphlets of size up to k vertices. We outline three variants of lifted graphlet counts: the ordered, unordered, and shotgun estimators. We prove that our graphlet count updates are unbiased for the true graphlet count, have low correlation between samples, and have a controlled variance. We compare the experimental performance of lifted graphlet counts to the state-of-the art graphlet sampling procedures: Waddling and the pairwise subgraph random walk.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro