Estimating graph parameters via random walks with restarts

09/04/2017
by   Anna Ben-Hamou, et al.
0

In this paper we discuss the problem of estimating graph parameters from a random walk with restarts at a fixed vertex x. For regular graphs G, one can estimate the number of vertices n_G and the ℓ^2 mixing time of G from x in O(√(n_G) (t_ unif^G)^3/4) steps, where t_ unif^G is the uniform mixing time on G. The algorithm is based on the number of intersections of random walk paths X,Y, i.e. the number of times (t,s) such that X_t=Y_s. Our method improves on previous methods by various authors which only consider collisions (i.e. times t with X_t=Y_t). We also show that the time complexity of our algorithm is optimal (up to log factors) for 3-regular graphs with prescribed mixing times. For general graphs, we adapt the intersections algorithm to compute the number of edges m_G and the ℓ^2 mixing time from the starting vertex x in O(√(m_G) (t_ unif^G)^3/4) steps. Under mild additional assumptions (which hold e.g. for sparse graphs) the number of vertices can also be estimated by this time. Finally, we show that these algorithms, which may take sublinear time, have a fundamental limitation: it is not possible to devise a sublinear stopping time at which one can be reasonably sure that our parameters are well estimated. On the other hand, we show that, given either m_G or the mixing time of G, we can compute the "other parameter" with a self-stopping algorithm.

READ FULL TEXT

page 1

page 2

page 3

page 4

research
08/15/2022

Speeding up random walk mixing by starting from a uniform vertex

The theory of rapid mixing random walks plays a fundamental role in the ...
research
08/29/2021

Well-mixing vertices and almost expanders

We study regular graphs in which the random walks starting from a positi...
research
01/05/2018

Local Mixing Time: Distributed Computation and Applications

The mixing time of a graph is an important metric, which is not only use...
research
06/22/2020

How to Count Triangles, without Seeing the Whole Graph

Triangle counting is a fundamental problem in the analysis of large grap...
research
11/03/2021

Deterministic Approximation of Random Walks via Queries in Graphs of Unbounded Size

Consider the following computational problem: given a regular digraph G=...
research
04/16/2013

Efficient Computation of Mean Truncated Hitting Times on Very Large Graphs

Previous work has shown the effectiveness of random walk hitting times a...
research
07/14/2022

Cover and Hitting Times of Hyperbolic Random Graphs

We study random walks on the giant component of Hyperbolic Random Graphs...

Please sign up or login with your details

Forgot password? Click here to reset