Estimating Extreme Value Index by Subsampling for Massive Datasets with Heavy-Tailed Distributions

07/04/2020
by   Yongxin Li, et al.
0

Modern statistical analyses often encounter datasets with massive sizes and heavy-tailed distributions. For datasets with massive sizes, traditional estimation methods can hardly be used to estimate the extreme value index directly. To address the issue, we propose here a subsampling-based method. Specifically, multiple subsamples are drawn from the whole dataset by using the technique of simple random subsampling with replacement. Based on each subsample, an approximate maximum likelihood estimator can be computed. The resulting estimators are then averaged to form a more accurate one. Under appropriate regularity conditions, we show theoretically that the proposed estimator is consistent and asymptotically normal. With the help of the estimated extreme value index, a normal range can be established for a heavy-tailed random variable. Observations that fall outside the range should be treated as suspected records and can be practically regarded as outliers. Extensive simulation experiments are provided to demonstrate the promising performance of our method. A real data analysis is also presented for illustration purpose.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset