Error mitigation of entangled states using brainbox quantum autoencoders

03/02/2023
by   Joséphine Pazem, et al.
0

Current quantum hardware is subject to various sources of noise that limits the access to multi-qubit entangled states. Quantum autoencoder circuits with a single qubit bottleneck have shown capability to correct error in noisy entangled state. By introducing slightly more complex structures in the bottleneck, the so-called brainboxes, the denoising process can take place faster and for stronger noise channels. Choosing the most suitable brainbox for the bottleneck is the result of a trade-off between noise intensity on the hardware, and the training impedance. Finally, by studying Rényi entropy flow throughout the networks we demonstrate that the localization of entanglement plays a central role in denoising through learning.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro