Error Lower Bounds of Constant Step-size Stochastic Gradient Descent

10/18/2019 ∙ by Zhiyan Ding, et al. ∙ 0

Stochastic Gradient Descent (SGD) plays a central role in modern machine learning. While there is extensive work on providing error upper bound for SGD, not much is known about SGD error lower bound. In this paper, we study the convergence of constant step-size SGD. We provide error lower bound of SGD for potentially non-convex objective functions with Lipschitz gradients. To our knowledge, this is the first analysis for SGD error lower bound without the strong convexity assumption. We use experiments to illustrate our theoretical results.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.