Error estimates of the backward Euler-Maruyama method for multi-valued stochastic differential equations

06/27/2019
by   Monika Eisenmann, et al.
0

In this paper, we derive error estimates of the backward Euler-Maruyama method applied to multi-valued stochastic differential equations. An important example of such an equation is a stochastic gradient flow whose associated potential is not continuously differentiable, but assumed to be convex. We show that the backward Euler-Maruyama method is well-defined and convergent of order at least 1/4 with respect to the root-mean-square norm. Our error analysis relies on techniques for deterministic problems developed in [Nochetto, Savaré, and Verdi, Comm. Pure Appl. Math., 2000]. We verify that our setting applies to an overdamped Langevin equation with a discontinuous gradient and to a spatially semi-discrete approximation of the stochastic p-Laplace equation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset