Error-based Knockoffs Inference for Controlled Feature Selection

03/09/2022
by   Xuebin Zhao, et al.
0

Recently, the scheme of model-X knockoffs was proposed as a promising solution to address controlled feature selection under high-dimensional finite-sample settings. However, the procedure of model-X knockoffs depends heavily on the coefficient-based feature importance and only concerns the control of false discovery rate (FDR). To further improve its adaptivity and flexibility, in this paper, we propose an error-based knockoff inference method by integrating the knockoff features, the error-based feature importance statistics, and the stepdown procedure together. The proposed inference procedure does not require specifying a regression model and can handle feature selection with theoretical guarantees on controlling false discovery proportion (FDP), FDR, or k-familywise error rate (k-FWER). Empirical evaluations demonstrate the competitive performance of our approach on both simulated and real data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset