Error analysis for local coarsening in univariate spline spaces

09/06/2023
by   Silvano Figueroa, et al.
0

In this article we analyze the error produced by the removal of an arbitrary knot from a spline function. When a knot has multiplicity greater than one, this implies a reduction of its multiplicity by one unit. In particular, we deduce a very simple formula to compute the error in terms of some neighboring knots and a few control points of the considered spline. Furthermore, we show precisely how this error is related to the jump of a derivative of the spline at the knot. We then use the developed theory to propose efficient and very low-cost local error indicators and adaptive coarsening algorithms. Finally, we present some numerical experiments to illustrate their performance and show some applications.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset