ERNIE-DOC: The Retrospective Long-Document Modeling Transformer

12/31/2020 ∙ by Siyu Ding, et al. ∙ 8

Transformers are not suited for processing long document input due to its quadratically increasing memory and time consumption. Simply truncating a long document or applying the sparse attention mechanism will incur the context fragmentation problem or inferior modeling capability with comparable model size. In this paper, we propose ERNIE-DOC, a document-level language pretraining model based on Recurrence Transformers. Two well-designed techniques, namely the retrospective feed mechanism and the enhanced recurrence mechanism enable ERNIE-DOC with much longer effective context length to capture the contextual information of a whole document. We pretrain ERNIE-DOC to explicitly learn the relationship among segments with an additional document-aware segment reordering objective. Various experiments on both English and Chinese document-level tasks are conducted. ERNIE-DOC achieves SOTA language modeling result of 16.8 ppl on WikiText-103 and outperforms competitive pretraining models on most language understanding tasks such as text classification, question answering by a large margin.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.