Ergodic properties of some Markov chains models in random environments

08/13/2021
by   Lionel Truquet, et al.
0

We study ergodic properties of some Markov chains models in random environments when the random Markov kernels that define the dynamic satisfy some usual drift and small set conditions but with random coefficients. In particular, we adapt a standard coupling scheme used for getting geometric ergodic properties for homogeneous Markov chains to the random environment case and we prove the existence of a process of randomly invariant probability measures for such chains, in the spirit of the approach of Kifer for chains satisfying some Doeblin type conditions. We then deduce ergodic properties of such chains when the environment is itself ergodic. Our results complement and sharpen existing ones by providing quite weak and easily checkable assumptions on the random Markov kernels. As a by-product, we obtain a framework for studying some time series models with strictly exogenous covariates. We illustrate our results with autoregressive time series with functional coefficients and some threshold autoregressive processes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset