Equivariant Spherical CNN for Data Efficient and High-Performance Medical Image Processing

07/06/2023
by   Amirreza Hashemi, et al.
0

This work highlights the significance of equivariant networks as efficient and high-performance approaches for tomography applications. Our study builds upon the limitations of Convolutional Neural Networks (CNNs), which have shown promise in post-processing various medical imaging systems. However, the efficiency of conventional CNNs heavily relies on an undiminished and proper training set. To tackle this issue, in this study, we introduce an equivariant network, aiming to reduce CNN's dependency on specific training sets. We evaluate the efficacy of equivariant CNNs on spherical signals for tomographic medical imaging problems. Our results demonstrate superior quality and computational efficiency of spherical CNNs (SCNNs) in denoising and reconstructing benchmark problems. Furthermore, we propose a novel approach to employ SCNNs as a complement to conventional image reconstruction tools, enhancing the outcomes while reducing reliance on the training set. Across all cases, we observe a significant decrease in computational costs while maintaining the same or higher quality of image processing using SCNNs compared to CNNs. Additionally, we explore the potential of this network for broader tomography applications, particularly those requiring omnidirectional representation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset