EQ-Net: A Unified Deep Learning Framework for Log-Likelihood Ratio Estimation and Quantization

12/23/2020
by   Marius Arvinte, et al.
0

In this work, we introduce EQ-Net: the first holistic framework that solves both the tasks of log-likelihood ratio (LLR) estimation and quantization using a data-driven method. We motivate our approach with theoretical insights on two practical estimation algorithms at the ends of the complexity spectrum and reveal a connection between the complexity of an algorithm and the information bottleneck method: simpler algorithms admit smaller bottlenecks when representing their solution. This motivates us to propose a two-stage algorithm that uses LLR compression as a pretext task for estimation and is focused on low-latency, high-performance implementations via deep neural networks. We carry out extensive experimental evaluation and demonstrate that our single architecture achieves state-of-the-art results on both tasks when compared to previous methods, with gains in quantization efficiency as high as 20% and reduced estimation latency by up to 60% when measured on general purpose and graphical processing units (GPU). In particular, our approach reduces the GPU inference latency by more than two times in several multiple-input multiple-output (MIMO) configurations. Finally, we demonstrate that our scheme is robust to distributional shifts and retains a significant part of its performance when evaluated on 5G channel models, as well as channel estimation errors.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset