EnvGAN: Adversarial Synthesis of Environmental Sounds for Data Augmentation

04/15/2021
by   Aswathy Madhu, et al.
0

The research in Environmental Sound Classification (ESC) has been progressively growing with the emergence of deep learning algorithms. However, data scarcity poses a major hurdle for any huge advance in this domain. Data augmentation offers an excellent solution to this problem. While Generative Adversarial Networks (GANs) have been successful in generating synthetic speech and sounds of musical instruments, they have hardly been applied to the generation of environmental sounds. This paper presents EnvGAN, the first ever application of GANs for the adversarial generation of environmental sounds. Our experiments on three standard ESC datasets illustrate that the EnvGAN can synthesize audio similar to the ones in the datasets. The suggested method of augmentation outshines most of the futuristic techniques for audio augmentation.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro