Entropy-variance inequalities for discrete log-concave random variables via degree of freedom

12/18/2022
by   Heshan Aravinda, et al.
0

We utilize a discrete version of the notion of degree of freedom to prove a sharp min-entropy-variance inequality for integer valued log-concave random variables. More specifically, we show that the geometric distribution minimizes the min-entropy within the class of log-concave probability sequences with fixed variance. As an application, we obtain a discrete Rényi entropy power inequality in the log-concave case, which improves a result of Bobkov, Marsiglietti and Melbourne (2022).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro