Entropy modulo a prime

03/16/2019
by   Tom Leinster, et al.
0

Building on work of Kontsevich, we introduce a definition of the entropy of a finite probability distribution in which the "probabilities" are integers modulo a prime p. The entropy, too, is an integer mod p. Entropy mod p is shown to be uniquely characterized by a functional equation identical to the one that characterizes ordinary Shannon entropy, justifying the name. We also establish a sense in which certain real entropies have residues mod p, connecting the concepts of entropy over R and over Z/pZ. Finally, entropy mod p is expressed as a polynomial which is shown to satisfy several identities, linking into work of Cathelineau, Elbaz-Vincent and Gangl on polylogarithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro