Entropy and Energy Detection-based Spectrum Sensing over F Composite Fading Channels

07/16/2018
by   Seong Ki Yoo, et al.
0

In this paper, we investigate the performance of energy detection-based spectrum sensing over F composite fading channels. To this end, an analytical expression for the average detection probability is firstly derived. This expression is then extended to account for collaborative spectrum sensing, square-law selection diversity reception and noise power uncertainty. The corresponding receiver operating characteristics (ROC) are analyzed for different conditions of the average signal-to-noise ratio (SNR), noise power uncertainty, time-bandwidth product, multipath fading, shadowing, number of diversity branches and number of collaborating users. It is shown that the energy detection performance is sensitive to the severity of the multipath fading and amount of shadowing, whereby even small variations in either of these physical phenomena can significantly impact the detection probability. As a figure of merit to evaluate the detection performance, the area under the ROC curve (AUC) is derived and evaluated for different multipath fading and shadowing conditions. Closed-form expressions for the Shannon entropy and cross entropy are also formulated and assessed for different average SNR, multipath fading and shadowing conditions. Then the relationship between the Shannon entropy and ROC/AUC is examined where it is found that the average number of bits required for encoding a signal becomes small (i.e., low Shannon entropy) when the detection probability is high or when the AUC is large. The difference between composite and traditional small-scale fading is emphasized by comparing the cross entropy for Rayleigh and Nakagami-m fading. A validation of the analytical results is provided through a careful comparison with the results of some simulations.

READ FULL TEXT

page 22

page 23

research
11/16/2020

Unified Composite Distribution and Its Applications to Double Shadowed α-κ-μ Fading Channels

In this paper, we propose a mixture Gamma shadowed (MGS) distribution as...
research
07/25/2018

Performance of Cognitive Radio Systems over κ-μ Shadowed with Integer μ and Fisher-Snedecor F Fading Channels

In this paper, we analyze the performance of cognitive radio (CR) system...
research
03/24/2018

Spectrum Sensing with Multiple Primary Users over Fading Channels

We investigate the impact of multiple primary users (PUs) and fading on ...
research
05/06/2019

Selection Combining Scheme over Non-identically Distributed Fisher-Snedecor F Fading Channels

In this paper, the performance of the selection combining (SC) scheme ov...
research
04/24/2018

Unified approaches based effective capacity analysis over composite α-η-μ/gamma fading channels

This letter analyses the effective capacity of communications system usi...
research
08/09/2023

Ergodic Capacity of Dyadic Fading Channels in Ultra Low-SNR Regime

In a mobile wireless channel, the small-scale multipath fading induces t...
research
06/03/2015

Low Power Wideband Sensing for One-Bit Quantized Cognitive Radio Systems

We proposes an ultra low power wideband spectrum sensing architecture by...

Please sign up or login with your details

Forgot password? Click here to reset