Entity Identification as Multitasking
Standard approaches in entity identification hard-code boundary detection and type prediction into labels (e.g., John/B-PER Smith/I-PER) and then perform Viterbi. This has two disadvantages: 1. the runtime complexity grows quadratically in the number of types, and 2. there is no natural segment-level representation. In this paper, we propose a novel neural architecture that addresses these disadvantages. We frame the problem as multitasking, separating boundary detection and type prediction but optimizing them jointly. Despite its simplicity, this architecture performs competitively with fully structured models such as BiLSTM-CRFs while scaling linearly in the number of types. Furthermore, by construction, the model induces type-disambiguating embeddings of predicted mentions.
READ FULL TEXT