Entity-aware and Motion-aware Transformers for Language-driven Action Localization in Videos

05/12/2022
by   Shuo Yang, et al.
0

Language-driven action localization in videos is a challenging task that involves not only visual-linguistic matching but also action boundary prediction. Recent progress has been achieved through aligning language query to video segments, but estimating precise boundaries is still under-explored. In this paper, we propose entity-aware and motion-aware Transformers that progressively localizes actions in videos by first coarsely locating clips with entity queries and then finely predicting exact boundaries in a shrunken temporal region with motion queries. The entity-aware Transformer incorporates the textual entities into visual representation learning via cross-modal and cross-frame attentions to facilitate attending action-related video clips. The motion-aware Transformer captures fine-grained motion changes at multiple temporal scales via integrating long short-term memory into the self-attention module to further improve the precision of action boundary prediction. Extensive experiments on the Charades-STA and TACoS datasets demonstrate that our method achieves better performance than existing methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset