Ensure Differential Privacy and Convergence Accuracy in Consensus Tracking and Aggregative Games with Coupling Constraints

10/28/2022
by   Yongqiang Wang, et al.
0

We address differential privacy for fully distributed aggregative games with shared coupling constraints. By co-designing the generalized Nash equilibrium (GNE) seeking mechanism and the differential-privacy noise injection mechanism, we propose the first GNE seeking algorithm that can ensure both provable convergence to the GNE and rigorous epsilon-differential privacy, even with the number of iterations tending to infinity. As a basis of the co-design, we also propose a new consensus-tracking algorithm that can achieve rigorous epsilon-differential privacy while maintaining accurate tracking performance, which, to our knowledge, has not been achieved before. To facilitate the convergence analysis, we also establish a general convergence result for stochastically-perturbed nonstationary fixed-point iteration processes, which lie at the core of numerous optimization and variational problems. Numerical simulation results confirm the effectiveness of the proposed approach.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset