EnsembleDAgger: A Bayesian Approach to Safe Imitation Learning

07/22/2018 ∙ by Kunal Menda, et al. ∙ 0

While imitation learning is often used in robotics, this approach often suffers from data mismatch and compounding errors. DAgger is an iterative algorithm that addresses these issues by aggregating training data from both the expert and novice policies, but does not consider the impact of safety. We present a probabilistic extension to DAgger, which attempts to quantify the confidence of the novice policy as a proxy for safety. Our method, EnsembleDAgger, approximates a GP using an ensemble of neural networks. Using the variance as a measure of confidence, we compute a decision rule that captures how much we doubt the novice, thus determining when it is safe to allow the novice to act. With this approach, we aim to maximize the novice's share of actions, while constraining the probability of failure. We demonstrate improved safety and learning performance compared to other DAgger variants and classic imitation learning on an inverted pendulum and in the MuJoCo HalfCheetah environment.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.