Ensemble Methods for Personalized E-Commerce Search Challenge at CIKM Cup 2016

08/15/2017
by   Chen Wu, et al.
0

Personalized search has been a hot research topic for many years and has been widely used in e-commerce. This paper describes our solution to tackle the challenge of personalized e-commerce search at CIKM Cup 2016. The goal of this competition is to predict search relevance and re-rank the result items in SERP according to the personalized search, browsing and purchasing preferences. Based on a detailed analysis of the provided data, we extract three different types of features, i.e., statistic features, query-item features and session features. Different models are used on these features, including logistic regression, gradient boosted decision trees, rank svm and a novel deep match model. With the blending of multiple models, a stacking ensemble model is built to integrate the output of individual models and produce a more accurate prediction result. Based on these efforts, our solution won the champion of the competition on all the evaluation metrics.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset