Ensemble-Based Experimental Design for Targeted High-Resolution Simulations to Inform Climate Models

01/12/2022
by   Oliver R. A. Dunbar, et al.
0

Targeted high-resolution simulations driven by a general circulation model (GCM) can be used to calibrate GCM parameterizations of processes that are globally unresolvable but can be resolved in limited-area simulations. This raises the question of where to place high-resolution simulations to be maximally informative about the uncertain parameterizations in the global model. Here we construct an ensemble-based parallel algorithm to locate regions that maximize the uncertainty reduction, or information gain, in the uncertainty quantification of GCM parameters with regional data. The algorithm is based on a Bayesian framework that exploits a quantified posterior distribution on GCM parameters as a measure of uncertainty. The algorithm is embedded in the recently developed calibrate-emulate-sample (CES) framework, which performs efficient model calibration and uncertainty quantification with only O(10^2) forward model evaluations, compared with O(10^5) forward model evaluations typically needed for traditional approaches to Bayesian calibration. We demonstrate the algorithm with an idealized GCM, with which we generate surrogates of high-resolution data. In this setting, we calibrate parameters and quantify uncertainties in a quasi-equilibrium convection scheme. We consider (i) localization in space for a statistically stationary problem, and (ii) localization in space and time for a seasonally varying problem. In these proof-of-concept applications, the calculated information gain reflects the reduction in parametric uncertainty obtained from Bayesian inference when harnessing a targeted sample of data. The largest information gain results from regions near the intertropical convergence zone (ITCZ) and indeed the algorithm automatically targets these regions for data collection.

READ FULL TEXT

page 9

page 12

research
12/24/2020

Calibration and Uncertainty Quantification of Convective Parameters in an Idealized GCM

Parameters in climate models are usually calibrated manually, exploiting...
research
11/03/2022

Quantifying Model Uncertainty for Semantic Segmentation using Operators in the RKHS

Deep learning models for semantic segmentation are prone to poor perform...
research
08/08/2023

PSRFlow: Probabilistic Super Resolution with Flow-Based Models for Scientific Data

Although many deep-learning-based super-resolution approaches have been ...
research
08/31/2017

Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations

Climate projections continue to be marred by large uncertainties, which ...
research
08/14/2020

Data-Informed Decomposition for Localized Uncertainty Quantification of Dynamical Systems

Industrial dynamical systems often exhibit multi-scale response due to m...
research
11/11/2022

A Bayesian approach for the modelling of material stocks and flows with incomplete data

Material Flow Analysis (MFA) is used to quantify and understand the life...

Please sign up or login with your details

Forgot password? Click here to reset