Enriched Lawvere Theories for Operational Semantics

05/14/2019 ∙ by John C. Baez, et al. ∙ 0

Enriched Lawvere theories are a generalization of Lawvere theories that allow us to describe the operational semantics of formal systems. For example, a graph-enriched Lawvere theory describes structures that have a graph of operations of each arity, where the vertices are operations and the edges are rewrites between operations. Enriched theories can be used to equip systems with operational semantics, and maps between enriching categories can serve to translate between different forms of operational and denotational semantics. The Grothendieck construction lets us study all models of all enriched theories in all contexts in a single category. We illustrate these ideas with the SKI-combinator calculus, a variable-free version of the lambda calculus, and with Milner's calculus of communicating processes.

READ FULL TEXT
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

Code Repositories

reference

Rchain reference material


view repo
This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.