Enhancing Low-resolution Face Recognition with Feature Similarity Knowledge Distillation

03/08/2023
by   Sungho Shin, et al.
0

In this study, we introduce a feature knowledge distillation framework to improve low-resolution (LR) face recognition performance using knowledge obtained from high-resolution (HR) images. The proposed framework transfers informative features from an HR-trained network to an LR-trained network by reducing the distance between them. A cosine similarity measure was employed as a distance metric to effectively align the HR and LR features. This approach differs from conventional knowledge distillation frameworks, which use the L_p distance metrics and offer the advantage of converging well when reducing the distance between features of different resolutions. Our framework achieved a 3 improvement over the previous state-of-the-art method on the AgeDB-30 benchmark without bells and whistles, while maintaining a strong performance on HR images. The effectiveness of cosine similarity as a distance metric was validated through statistical analysis, making our approach a promising solution for real-world applications in which LR images are frequently encountered. The code and pretrained models will be publicly available on GitHub.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset