Enhancing Latent Space Clustering in Multi-filter Seq2Seq Model: A Reinforcement Learning Approach

09/25/2021
by   Zhaokun Xue, et al.
0

In sequence-to-sequence language processing tasks, sentences with heterogeneous semantics or grammatical structures may increase the difficulty of convergence while training the network. To resolve this problem, we introduce a model that concentrates the each of the heterogeneous features in the input-output sequences. Build upon the encoder-decoder architecture, we design a latent-enhanced multi-filter seq2seq model (LMS2S) that analyzes the latent space representations using a clustering algorithm. The representations are generated from an encoder and a latent space enhancer. A cluster classifier is applied to group the representations into clusters. A soft actor-critic reinforcement learning algorithm is applied to the cluster classifier to enhance the clustering quality by maximizing the Silhouette score. Then, multiple filters are trained by the features only from their corresponding clusters, the heterogeneity of the training data can be resolved accordingly. Our experiments on semantic parsing and machine translation demonstrate the positive correlation between the clustering quality and the model's performance, as well as show the enhancement our model has made with respect to the ordinary encoder-decoder model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro