Enhancing Deep Neural Networks Against Adversarial Malware Examples
Machine learning based malware detection is known to be vulnerable to adversarial evasion attacks. The state-of-the-art is that there are no effective countermeasures against these attacks. Inspired by the AICS'2019 Challenge organized by the MIT Lincoln Lab, we systematize a number of principles for enhancing the robustness of neural networks against adversarial malware evasion attacks. Some of these principles have been scattered in the literature, but others are proposed in this paper for the first time. Under the guidance of these principles, we propose a framework for defending against adversarial malware evasion attacks. We validated the framework using the Drebin dataset of Android malware. We applied the defense framework to the AICS'2019 Challenge and won, without knowing how the organizers generated the adversarial examples. However, we see a 22% difference between the accuracy in the experiment with the Drebin dataset (for binary classification) and the accuracy in the experiment with respect to the AICS'2019 Challenge (for multiclass classification). We attribute this gap to a fundamental barrier that without knowing the attacker's manipulation set, the defender cannot do effective Adversarial Training.
READ FULL TEXT