Engineering Predecessor Data Structures for Dynamic Integer Sets

04/14/2021
by   Patrick Dinklage, et al.
0

We present highly optimized data structures for the dynamic predecessor problem, where the task is to maintain a set S of w-bit numbers under insertions, deletions, and predecessor queries (return the largest element in S no larger than a given key). The problem of finding predecessors can be viewed as a generalized form of the membership problem, or as a simple version of the nearest neighbour problem. It lies at the core of various real-world problems such as internet routing. In this work, we engineer (1) a simple implementation of the idea of universe reduction, similar to van-Emde-Boas trees (2) variants of y-fast tries [Willard, IPL'83], and (3) B-trees with different strategies for organizing the keys contained in the nodes, including an implementation of dynamic fusion nodes [Pǎtraşcu and Thorup, FOCS'14]. We implement our data structures for w=32,40,64, which covers most typical scenarios. Our data structures finish workloads faster than previous approaches while being significantly more space-efficient, e.g., they clearly outperform standard implementations of the STL by finishing up to four times as fast using less than a third of the memory. Our tests also provide more general insights on data structure design, such as how small sets should be stored and handled and if and when new CPU instructions such as advanced vector extensions pay off.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset