Enforcing Deterministic Constraints on Generative Adversarial Networks for Emulating Physical Systems

11/15/2019
by   Zeng Yang, et al.
18

Generative adversarial networks (GANs) are initially proposed to generate images by learning from a large number of samples. Recently, GANs have been used to emulate complex physical systems such as turbulent flows. However, a critical question must be answered before GANs can be considered trusted emulators for physical systems: do GANs-generated samples conform to the various physical constraints? These include both deterministic constraints (e.g., conservation laws) and statistical constraints (e.g., energy spectrum in turbulent flows). The latter has been studied in a companion paper (Wu et al. 2019. Enforcing statistical constraints in generative adversarial networks for modeling chaotic dynamical systems. arxiv:1905.06841). In the present work, we enforce deterministic yet approximate constraints on GANs by incorporating them into the loss function of the generator. We evaluate the performance of physics-constrained GANs on two representative tasks with geometrical constraints (generating points on circles) and differential constraints (generating divergence-free flow velocity fields), respectively. In both cases, the constrained GANs produced samples that precisely conform to the underlying constraints, even though the constraints are only enforced approximately. More importantly, the imposed constraints significantly accelerate the convergence and improve the robustness in the training. These improvements are noteworthy, as the convergence and robustness are two well-known obstacles in the training of GANs.

READ FULL TEXT

page 18

page 20

page 23

page 24

research
05/13/2019

Enforcing Statistical Constraints in Generative Adversarial Networks for Modeling Chaotic Dynamical Systems

Simulating complex physical systems often involves solving partial diffe...
research
12/01/2022

Physics-Constrained Generative Adversarial Networks for 3D Turbulence

Generative Adversarial Networks (GANs) have received wide acclaim among ...
research
03/22/2018

Enforcing constraints for interpolation and extrapolation in Generative Adversarial Networks

Generative Adversarial Networks (GANs) are becoming popular choices for ...
research
10/28/2022

Towards prediction of turbulent flows at high Reynolds numbers using high performance computing data and deep learning

In this paper, deep learning (DL) methods are evaluated in the context o...
research
07/26/2020

Efficient Generation of Structured Objects with Constrained Adversarial Networks

Generative Adversarial Networks (GANs) struggle to generate structured o...
research
02/15/2018

Conditioning of three-dimensional generative adversarial networks for pore and reservoir-scale models

Geostatistical modeling of petrophysical properties is a key step in mod...

Please sign up or login with your details

Forgot password? Click here to reset