Energy reconstruction for large liquid scintillator detectors with machine learning techniques: aggregated features approach
Large scale detectors consisting of a liquid scintillator (LS) target surrounded by an array of photo-multiplier tubes (PMT) are widely used in modern neutrino experiments: Borexino, KamLAND, Daya Bay, Double Chooz, RENO, and upcoming JUNO with its satellite detector TAO. Such apparatuses are able to measure neutrino energy, which can be derived from the amount of light and its spatial and temporal distribution over PMT-channels. However, achieving a fine energy resolution in large scale detectors is challenging. In this work, we present machine learning methods for energy reconstruction in JUNO, the most advanced detector of its type. We focus on positron events in the energy range of 0-10 MeV which corresponds to the main signal in JUNO - neutrinos originated from nuclear reactor cores and detected via an inverse beta-decay channel. We consider Boosted Decision Trees and Fully Connected Deep Neural Network trained on aggregated features, calculated using information collected by PMTs. We describe the details of our feature engineering procedure and show that machine learning models can provide energy resolution σ = 3% at 1 MeV using subsets of engineered features. The dataset for model training and testing is generated by the Monte Carlo method with the official JUNO software. Consideration of calibration sources for evaluation of the reconstruction algorithms performance on real data is also presented.
READ FULL TEXT