Energy Disaggregation using Variational Autoencoders

03/22/2021
by   Antoine Langevin, et al.
0

Non-intrusive load monitoring (NILM) is a technique that uses a single sensor to measure the total power consumption of a building. Using an energy disaggregation method, the consumption of individual appliances can be estimated from the aggregate measurement. Recent disaggregation algorithms have significantly improved the performance of NILM systems. However, the generalization capability of these methods to different houses as well as the disaggregation of multi-state appliances are still major challenges. In this paper we address these issues and propose an energy disaggregation approach based on the variational autoencoders (VAE) framework. The probabilistic encoder makes this approach an efficient model for encoding information relevant to the reconstruction of the target appliance consumption. In particular, the proposed model accurately generates more complex load profiles, thus improving the power signal reconstruction of multi-state appliances. Moreover, its regularized latent space improves the generalization capabilities of the model across different houses. The proposed model is compared to state-of-the-art NILM approaches on the UK-DALE dataset, and yields competitive results. The mean absolute error reduces by 18 appliances compared to the state-of-the-art. The F1-Score increases by more than 11 aggregate measurement.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset