Energy-adaptive Riemannian optimization on the Stiefel manifold

08/22/2021
by   Robert Altmann, et al.
0

This paper addresses the numerical simulation of nonlinear eigenvector problems such as the Gross-Pitaevskii and Kohn-Sham equation arising in computational physics and chemistry. These problems characterize critical points of energy minimization problems on the infinite-dimensional Stiefel manifold. To efficiently compute minimizers, we propose a novel Riemannian gradient descent method induced by an energy-adaptive metric. Quantified convergence of the methods is established under suitable assumptions on the underlying problem. A non-monotone line search and the inexact evaluation of Riemannian gradients substantially improve the overall efficiency of the method. Numerical experiments illustrate the performance of the method and demonstrates its competitiveness with well-established schemes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset