End-to-End Neural Event Coreference Resolution

09/17/2020 ∙ by Yaojie Lu, et al. ∙ 0

Traditional event coreference systems usually rely on pipeline framework and hand-crafted features, which often face error propagation problem and have poor generalization ability. In this paper, we propose an End-to-End Event Coreference approach – E3C neural network, which can jointly model event detection and event coreference resolution tasks, and learn to extract features from raw text automatically. Furthermore, because event mentions are highly diversified and event coreference is intricately governed by long-distance, semantic-dependent decisions, a type-guided event coreference mechanism is further proposed in our E3C neural network. Experiments show that our method achieves new state-of-the-art performance on two standard datasets.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.