End-to-End Learning of Keypoint Representations for Continuous Control from Images

06/15/2021
by   Rinu Boney, et al.
1

In many control problems that include vision, optimal controls can be inferred from the location of the objects in the scene. This information can be represented using keypoints, which is a list of spatial locations in the input image. Previous works show that keypoint representations learned during unsupervised pre-training using encoder-decoder architectures can provide good features for control tasks. In this paper, we show that it is possible to learn efficient keypoint representations end-to-end, without the need for unsupervised pre-training, decoders, or additional losses. Our proposed architecture consists of a differentiable keypoint extractor that feeds the coordinates of the estimated keypoints directly to a soft actor-critic agent. The proposed algorithm yields performance competitive to the state-of-the art on DeepMind Control Suite tasks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset