End to End Chinese Lexical Fusion Recognition with Sememe Knowledge
In this paper, we present Chinese lexical fusion recognition, a new task which could be regarded as one kind of coreference recognition. First, we introduce the task in detail, showing the relationship with coreference recognition and differences from the existing tasks. Second, we propose an end-to-end joint model for the task, which exploits the state-of-the-art BERT representations as encoder, and is further enhanced with the sememe knowledge from HowNet by graph attention networks. We manually annotate a benchmark dataset for the task and then conduct experiments on it. Results demonstrate that our joint model is effective and competitive for the task. Detailed analysis is offered for comprehensively understanding the new task and our proposed model.
READ FULL TEXT