End-to-End Autoencoder Communications with Optimized Interference Suppression

12/29/2021
by   Kemal Davaslioglu, et al.
0

An end-to-end communications system based on Orthogonal Frequency Division Multiplexing (OFDM) is modeled as an autoencoder (AE) for which the transmitter (coding and modulation) and receiver (demodulation and decoding) are represented as deep neural networks (DNNs) of the encoder and decoder, respectively. This AE communications approach is shown to outperform conventional communications in terms of bit error rate (BER) under practical scenarios regarding channel and interference effects as well as training data and embedded implementation constraints. A generative adversarial network (GAN) is trained to augment the training data when there is not enough training data available. Also, the performance is evaluated in terms of the DNN model quantization and the corresponding memory requirements for embedded implementation. Then, interference training and randomized smoothing are introduced to train the AE communications to operate under unknown and dynamic interference (jamming) effects on potentially multiple OFDM symbols. Relative to conventional communications, up to 36 dB interference suppression for a channel reuse of four can be achieved by the AE communications with interference training and randomized smoothing. AE communications is also extended to the multiple-input multiple-output (MIMO) case and its BER performance gain with and without interference effects is demonstrated compared to conventional MIMO communications.

READ FULL TEXT
research
11/03/2021

SVD-Embedded Deep Autoencoder for MIMO Communications

Using a deep autoencoder (DAE) for end-to-end communication in multiple-...
research
02/21/2021

Information Decoding and SDR Implementation of DFRC Systems Without Training Signals

Recent performance analysis of dual-function radar communications (DFRC)...
research
02/27/2019

Extreme Learning Machine-Based Receiver for MIMO LED Communications

This work concerns receiver design for light-emitting diode (LED) multip...
research
11/19/2019

Low Complexity Autoencoder based End-to-End Learning of Coded Communications Systems

End-to-end learning of a communications system using the deep learning-b...
research
03/15/2023

Interference-Aware Constellation Design for Z-Interference Channels with Imperfect CSI

A deep autoencoder (DAE)-based end-to-end communication over the two-use...
research
12/21/2022

Vulnerabilities of Deep Learning-Driven Semantic Communications to Backdoor (Trojan) Attacks

This paper highlights vulnerabilities of deep learning-driven semantic c...
research
01/11/2023

Age of Information in Deep Learning-Driven Task-Oriented Communications

This paper studies the notion of age in task-oriented communications tha...

Please sign up or login with your details

Forgot password? Click here to reset