Encouraging an Appropriate Representation Simplifies Training of Neural Networks

11/17/2019
by   Krisztian Buza, et al.
0

A common assumption about neural networks is that they can learn an appropriate internal representations on their own, see e.g. end-to-end learning. In this work we challenge this assumption. We consider two simple tasks and show that the state-of-the-art training algorithm fails, although the model itself is able to represent an appropriate solution. We will demonstrate that encouraging an appropriate internal representation allows the same model to solve these tasks. While we do not claim that it is impossible to solve these tasks by other means (such as neural networks with more layers), our results illustrate that integration of domain knowledge in form of a desired internal representation may improve the generalization ability of neural networks.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset