Encoding of probability distributions for Asymmetric Numeral Systems

06/11/2021 ∙ by Jarek Duda, et al. ∙ 0

Many data compressors regularly encode probability distributions for entropy coding - requiring minimal description length type of optimizations. Canonical prefix/Huffman coding usually just writes lengths of bit sequences, this way approximating probabilities with powers-of-2. Operating on more accurate probabilities usually allows for better compression ratios, and is possible e.g. using arithmetic coding and Asymmetric Numeral Systems family. Especially the multiplication-free tabled variant of the latter (tANS) builds automaton often replacing Huffman coding due to better compression at similar computational cost - e.g. in popular Facebook Zstandard and Apple LZFSE compressors. There is discussed encoding of probability distributions for such applications, especially using Pyramid Vector Quantizer(PVQ)-based approach with deformation, also tuned symbol spread for tANS.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.