Encode-in-Style: Latent-based Video Encoding using StyleGAN2

03/28/2022
by   Trevine Oorloff, et al.
0

We propose an end-to-end facial video encoding approach that facilitates data-efficient high-quality video re-synthesis by optimizing low-dimensional edits of a single Identity-latent. The approach builds on StyleGAN2 image inversion and multi-stage non-linear latent-space editing to generate videos that are nearly comparable to input videos. It economically captures face identity, head-pose, and complex facial motions at fine levels, and thereby bypasses training and person modeling which tend to hamper many re-synthesis approaches. The approach is designed with maximum data efficiency, where a single W+ latent and 35 parameters per frame enable high-fidelity video rendering. This pipeline can also be used for puppeteering (i.e., motion transfer).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset