Employing distributional semantics to organize task-focused vocabulary learning

How can a learner systematically prepare for reading a book they are interested in? In this paper,we explore how computational linguistic methods such as distributional semantics, morphological clustering, and exercise generation can be combined with graph-based learner models to answer this question both conceptually and in practice. Based on the highly structured learner model and concepts from network analysis, the learner is guided to efficiently explore the targeted lexical space. They practice using multi-gap learning activities generated from the book focused on words that are central to the targeted lexical space. As such the approach offers a unique combination of computational linguistic methods with concepts from network analysis and the tutoring system domain to support learners in achieving their individual, reading task-based learning goals.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset