Empirical process theory for nonsmooth functions under functional dependence

08/19/2021 ∙ by Nathawut Phandoidaen, et al. ∙ 0

We provide an empirical process theory for locally stationary processes over nonsmooth function classes. An important novelty over other approaches is the use of the flexible functional dependence measure to quantify dependence. A functional central limit theorem and nonasymptotic maximal inequalities are provided. The theory is used to prove the functional convergence of the empirical distribution function (EDF) and to derive uniform convergence rates for kernel density estimators both for stationary and locally stationary processes. A comparison with earlier results based on other measures of dependence is carried out.



There are no comments yet.


page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.