Emotion Recognition in Conversations with Transfer Learning from Generative Conversation Modeling
Recognizing emotions in conversations is a challenging task due to the presence of contextual dependencies governed by self- and inter-personal influences. Recent approaches have focused on modeling these dependencies primarily via supervised learning. However, purely supervised strategies demand large amounts of annotated data, which is lacking in most of the available corpora in this task. To tackle this challenge, we look at transfer learning approaches as a viable alternative. Given the large amount of available conversational data, we investigate whether generative conversational models can be leveraged to transfer affective knowledge for the target task of detecting emotions in context. We propose an approach where we first train a neural dialogue model and then perform parameter transfer to initiate our target model. Apart from the traditional pre-trained sentence encoders, we also incorporate parameter transfer from the recurrent components that model inter-sentence context across the whole conversation. Based on this idea, we perform several experiments across multiple datasets and find improvement in performance and robustness against limited training data. Our models also achieve better validation performances in significantly fewer epochs. Overall, we infer that knowledge acquired from dialogue generators can indeed help recognize emotions in conversations.
READ FULL TEXT