Emotion Detection From Tweets Using a BERT and SVM Ensemble Model

08/09/2022
by   Ionuţ-Alexandru Albu, et al.
0

Automatic identification of emotions expressed in Twitter data has a wide range of applications. We create a well-balanced dataset by adding a neutral class to a benchmark dataset consisting of four emotions: fear, sadness, joy, and anger. On this extended dataset, we investigate the use of Support Vector Machine (SVM) and Bidirectional Encoder Representations from Transformers (BERT) for emotion recognition. We propose a novel ensemble model by combining the two BERT and SVM models. Experiments show that the proposed model achieves a state-of-the-art accuracy of 0.91 on emotion recognition in tweets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro