Emergent Criticality Through Adaptive Information Processing in Boolean Networks

04/20/2011 ∙ by Alireza Goudarzi, et al. ∙ 0

We study information processing in populations of Boolean networks with evolving connectivity and systematically explore the interplay between the learning capability, robustness, the network topology, and the task complexity. We solve a long-standing open question and find computationally that, for large system sizes N, adaptive information processing drives the networks to a critical connectivity K_c=2. For finite size networks, the connectivity approaches the critical value with a power-law of the system size N. We show that network learning and generalization are optimized near criticality, given task complexity and the amount of information provided threshold values. Both random and evolved networks exhibit maximal topological diversity near K_c. We hypothesize that this supports efficient exploration and robustness of solutions. Also reflected in our observation is that the variance of the values is maximal in critical network populations. Finally, we discuss implications of our results for determining the optimal topology of adaptive dynamical networks that solve computational tasks.

READ FULL TEXT VIEW PDF
POST COMMENT

Comments

There are no comments yet.

Authors

page 1

page 2

page 3

page 4

This week in AI

Get the week's most popular data science and artificial intelligence research sent straight to your inbox every Saturday.

References

  • (1) A. M. Turing. In Machine Intelligence, edited by B. Meltzer and D. Michie (Edinburgh University Press, Edinburgh, UK, 1969), 3–23.
  • (2) S. A. Kauffman, J. Theor. Biol. 22, 437 (1969)
  • (3) S. A. Kauffman, The Origins of Order: Self-Organization and Selection in Evolution ( Oxford University Press, New York, 1993).
  • (4) S. Bornholdt, Biol. Chem. 382, 1289–1299 (2001)
  • (5) B. Derrida and Y., Pomeau, Europhys. Lett., 1, 45–49 (1986).
  • (6) R.  Albert and A. L. Barabási, Phys. Rev. Lett. 84, 5660 (2000)
  • (7) B. Samuelson and C. Troein, Phys. Rev. Lett. 90, 098701 (2003).
  • (8) C. G. Langton, Physica D, 42, 12-37 (1990).
  • (9) N. H. Packard, in Dynamic Patterns in Complex Systems,, ed. by J. A. S. Kelso, A. J. Mandell, and M. F. Shlesinger (World Scientific, Singapore, 1988), p. 293-301.
  • (10) M. Mitchell, J. P. Crutchfield, and P. T. Hraber, Complex Systems, 7, 89-130 (1993).
  • (11) J. Lizier, M. Prokopenko, and A. Zomaya, in Proc. Eleventh Int’l Conference on the Simulation and Synthesis of Living Systems (Alife XI), (MIT Press, Cambridge, 2008), p. 374-381.
  • (12) S. A. Kauffman, J. Theor. Biol. 149, 4, 467-505 (1991).
  • (13) S. Bornholdt and T. Rohlf, Phys. Rev. Lett. 84, 6114, (2000).
  • (14) M. Liu and K. E. Bassler, Phys. Rev. E., 74, 4, 41910 (2006).
  • (15) U. Bastola and G. Parisi, Physica D 115, 203 (1998).
  • (16) A. Patarnello and P. Carnevali. Europhysics Lett., 4, 4, 503–508 (1987).
  • (17) P. Carnevali and S. Patarnello. Europhysics Lett., 4, 10, 1199–1204 (1987).
  • (18) S. Patarnello and P. Carnevali. In Neural Computing Architectures: The Design of Brain-Like Machines, edited by I. Aleksander (North Oxford Academic, London, 1989), p. 117.
  • (19) C. Van den Broeck and R. Kawai. Phys. Rev. A, 42, 10, 6210–6218 (1990).
  • (20) S. Wolfram, Rev. Mod. Phys. 55, 601-644 (1983).
  • (21) M. Zwick, Kybernetes, 33, 5/6, 877-905 (2004).
  • (22) A. W. F. Edwards, Biological Reviews, 69:443–474 (1994).
  • (23) M. A. Bedau and A. Bahm, In Artificial Life IV: Proc. of the Int’l Workshop on the Synthesis and Simulation of Living Systems, ed. by Brooks and Maes (MIT Press, Bradford, 1994), p. 258–268.
  • (24) M. Rubinov and O. Sporns, NeuroImage 52, 1059–69 (2010).
  • (25) M. Nykter et al., Phys. Rev. Lett., 100, 058702, (2008).
  • (26) S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Rev. Mod. Phys., 80, 4, 1275–1335 (2008).
  • (27) T. Rohlf, N. Gulbahce, and C. Teuscher, Phys. Rev. Lett., 99, 248701 (2007).
  • (28) P. Krawitz and I. Shmulevich, Phys. Rev. Lett., 98, 158701 (2007).