DeepAI
Log In Sign Up

Emergent Criticality Through Adaptive Information Processing in Boolean Networks

04/20/2011
by   Alireza Goudarzi, et al.
0

We study information processing in populations of Boolean networks with evolving connectivity and systematically explore the interplay between the learning capability, robustness, the network topology, and the task complexity. We solve a long-standing open question and find computationally that, for large system sizes N, adaptive information processing drives the networks to a critical connectivity K_c=2. For finite size networks, the connectivity approaches the critical value with a power-law of the system size N. We show that network learning and generalization are optimized near criticality, given task complexity and the amount of information provided threshold values. Both random and evolved networks exhibit maximal topological diversity near K_c. We hypothesize that this supports efficient exploration and robustness of solutions. Also reflected in our observation is that the variance of the values is maximal in critical network populations. Finally, we discuss implications of our results for determining the optimal topology of adaptive dynamical networks that solve computational tasks.

READ FULL TEXT VIEW PDF

page 1

page 2

page 3

page 4

06/25/2013

Learning, Generalization, and Functional Entropy in Random Automata Networks

It has been shown broeck90:physicalreview,patarnello87:europhys that fee...
12/04/2018

Vertex-Connectivity Measures for Node Failure Identification in Boolean Network Tomography

We investigate three questions in Boolean Network Tomography, related to...
01/31/2011

Boolean Networks Design by Genetic Algorithms

We present and discuss the results of an experimental analysis in the de...
06/20/2005

Dynamical Neural Network: Information and Topology

A neural network works as an associative memory device if it has large s...
03/22/2021

The dynamical regime and its importance for evolvability, task performance and generalization

It has long been hypothesized that operating close to the critical state...
10/04/2022

Logic and learning in network cascades

Critical cascades are found in many self-organizing systems. Here, we ex...
08/19/2020

Learning Connectivity of Neural Networks from a Topological Perspective

Seeking effective neural networks is a critical and practical field in d...

References

  • (1) A. M. Turing. In Machine Intelligence, edited by B. Meltzer and D. Michie (Edinburgh University Press, Edinburgh, UK, 1969), 3–23.
  • (2) S. A. Kauffman, J. Theor. Biol. 22, 437 (1969)
  • (3) S. A. Kauffman, The Origins of Order: Self-Organization and Selection in Evolution ( Oxford University Press, New York, 1993).
  • (4) S. Bornholdt, Biol. Chem. 382, 1289–1299 (2001)
  • (5) B. Derrida and Y., Pomeau, Europhys. Lett., 1, 45–49 (1986).
  • (6) R.  Albert and A. L. Barabási, Phys. Rev. Lett. 84, 5660 (2000)
  • (7) B. Samuelson and C. Troein, Phys. Rev. Lett. 90, 098701 (2003).
  • (8) C. G. Langton, Physica D, 42, 12-37 (1990).
  • (9) N. H. Packard, in Dynamic Patterns in Complex Systems,, ed. by J. A. S. Kelso, A. J. Mandell, and M. F. Shlesinger (World Scientific, Singapore, 1988), p. 293-301.
  • (10) M. Mitchell, J. P. Crutchfield, and P. T. Hraber, Complex Systems, 7, 89-130 (1993).
  • (11) J. Lizier, M. Prokopenko, and A. Zomaya, in Proc. Eleventh Int’l Conference on the Simulation and Synthesis of Living Systems (Alife XI), (MIT Press, Cambridge, 2008), p. 374-381.
  • (12) S. A. Kauffman, J. Theor. Biol. 149, 4, 467-505 (1991).
  • (13) S. Bornholdt and T. Rohlf, Phys. Rev. Lett. 84, 6114, (2000).
  • (14) M. Liu and K. E. Bassler, Phys. Rev. E., 74, 4, 41910 (2006).
  • (15) U. Bastola and G. Parisi, Physica D 115, 203 (1998).
  • (16) A. Patarnello and P. Carnevali. Europhysics Lett., 4, 4, 503–508 (1987).
  • (17) P. Carnevali and S. Patarnello. Europhysics Lett., 4, 10, 1199–1204 (1987).
  • (18) S. Patarnello and P. Carnevali. In Neural Computing Architectures: The Design of Brain-Like Machines, edited by I. Aleksander (North Oxford Academic, London, 1989), p. 117.
  • (19) C. Van den Broeck and R. Kawai. Phys. Rev. A, 42, 10, 6210–6218 (1990).
  • (20) S. Wolfram, Rev. Mod. Phys. 55, 601-644 (1983).
  • (21) M. Zwick, Kybernetes, 33, 5/6, 877-905 (2004).
  • (22) A. W. F. Edwards, Biological Reviews, 69:443–474 (1994).
  • (23) M. A. Bedau and A. Bahm, In Artificial Life IV: Proc. of the Int’l Workshop on the Synthesis and Simulation of Living Systems, ed. by Brooks and Maes (MIT Press, Bradford, 1994), p. 258–268.
  • (24) M. Rubinov and O. Sporns, NeuroImage 52, 1059–69 (2010).
  • (25) M. Nykter et al., Phys. Rev. Lett., 100, 058702, (2008).
  • (26) S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Rev. Mod. Phys., 80, 4, 1275–1335 (2008).
  • (27) T. Rohlf, N. Gulbahce, and C. Teuscher, Phys. Rev. Lett., 99, 248701 (2007).
  • (28) P. Krawitz and I. Shmulevich, Phys. Rev. Lett., 98, 158701 (2007).