EMAP: A Cloud-Edge Hybrid Framework for EEG Monitoring and Cross-Correlation Based Real-time Anomaly Prediction

State-of-the-art techniques for detecting, or predicting, neurological disorders (1) focus on predicting each disorder individually, and are (2) computationally expensive, leading to a delay that can potentially render the prediction useless, especially in critical events. Towards this, we present a real-time two-tiered framework called EMAP, which cross-correlates the input with all the EEG signals in our mega-database (a combination of multiple EEG datasets) at the cloud, while tracking the signal in real-time at the edge, to predict the occurrence of a neurological anomaly. Using the proposed framework, we have demonstrated a prediction accuracy of up to 94 anomalies that we have tested.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro