Elysium: Automagically Healing Vulnerable Smart Contracts Using Context-Aware Patching

08/23/2021
by   Christof Ferreira Torres, et al.
0

Smart contracts are programs that are deployed and executed on the blockchain. Typically, smart contracts govern assets; popular smart contracts can govern assets worth millions. Just like traditional programs, smart contracts are subject to programming mistakes. However, a major difference is that smart contracts cannot be patched once deployed. Several approaches have been studied to improve smart contract security, by detecting bugs prior to deployment, allowing contracts to be updated, or modifying clients to prevent attacking transactions. The most elegant solution would be to automatically eliminate bugs prior to deployment. Merely identifying bugs is not enough. This became evident when the Parity wallet was hacked a second time after being manually patched following a security audit. Automatic pre-deployment patching offers a powerful promise to strengthen smart contract defenses. Current approaches are limited in the types of vulnerabilities that can be patched, in the flexibility of the patching process, and in scalability. In this paper we propose Elysium, a scalable approach towards automatic smart contract repair, that combines template-based patching with semantic patching by inferring context information from the bytecode. Elysium can currently automatically patch 7 known vulnerabilities in smart contracts using external bug-finding tools, and it can easily be extended with new templates and new bug-finding tools. We evaluate effectiveness and correctness of Elysium using 3 different datasets by replaying more than 500K transactions against patched contracts. We find that Elysium outperforms existing tools by patching at least 30 contracts. Finally, we compare the overhead in terms of deployment and transaction cost increase. In comparison to other tools, Elysium minimizes transaction cost (up to a factor of 1.9), for only a marginally higher deployment cost.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset