Eigenvalue initialisation and regularisation for Koopman autoencoders

12/23/2022
by   Jack W. Miller, et al.
0

Regularising the parameter matrices of neural networks is ubiquitous in training deep models. Typical regularisation approaches suggest initialising weights using small random values, and to penalise weights to promote sparsity. However, these widely used techniques may be less effective in certain scenarios. Here, we study the Koopman autoencoder model which includes an encoder, a Koopman operator layer, and a decoder. These models have been designed and dedicated to tackle physics-related problems with interpretable dynamics and an ability to incorporate physics-related constraints. However, the majority of existing work employs standard regularisation practices. In our work, we take a step toward augmenting Koopman autoencoders with initialisation and penalty schemes tailored for physics-related settings. Specifically, we propose the "eigeninit" initialisation scheme that samples initial Koopman operators from specific eigenvalue distributions. In addition, we suggest the "eigenloss" penalty scheme that penalises the eigenvalues of the Koopman operator during training. We demonstrate the utility of these schemes on two synthetic data sets: a driven pendulum and flow past a cylinder; and two real-world problems: ocean surface temperatures and cyclone wind fields. We find on these datasets that eigenloss and eigeninit improves the convergence rate by up to a factor of 5, and that they reduce the cumulative long-term prediction error by up to a factor of 3. Such a finding points to the utility of incorporating similar schemes as an inductive bias in other physics-related deep learning approaches.

READ FULL TEXT

page 4

page 12

research
01/27/2022

Eigenvalues of Autoencoders in Training and at Initialization

In this paper, we investigate the evolution of autoencoders near their i...
research
12/10/2021

How to Avoid Trivial Solutions in Physics-Informed Neural Networks

The advent of scientific machine learning (SciML) has opened up a new fi...
research
09/25/2020

A physics-informed operator regression framework for extracting data-driven continuum models

The application of deep learning toward discovery of data-driven models ...
research
01/28/2022

Geometric instability of out of distribution data across autoencoder architecture

We study the map learned by a family of autoencoders trained on MNIST, a...
research
01/04/2022

On an eigenvalue property of Summation-By-Parts operators

Summation-By-Parts (SBP) methods provide a systematic way of constructin...
research
03/04/2020

Forecasting Sequential Data using Consistent Koopman Autoencoders

Recurrent neural networks are widely used on time series data, yet such ...
research
05/01/2020

A Dual-Dimer Method for Training Physics-Constrained Neural Networks with Minimax Architecture

Data sparsity is a common issue to train machine learning tools such as ...

Please sign up or login with your details

Forgot password? Click here to reset