Efficiently Leveraging Multi-level User Intent for Session-based Recommendation via Atten-Mixer Network

06/26/2022
by   Peiyan Zhang, et al.
0

Session-based recommendation (SBR) aims to predict the user next action based on short and dynamic sessions. Recently, there has been an increasing interest in utilizing various elaborately designed graph neural networks (GNNs) to capture the pair-wise relationships among items, seemingly suggesting the design of more complicated models is the panacea for improving the empirical performance. However, these models achieve relatively marginal improvements with exponential growth in model complexity. In this paper, we dissect the classical GNN-based SBR models and empirically find that some sophisticated GNN propagations are redundant, given the readout module plays a significant role in GNN-based models. Based on this observation, we intuitively propose to remove the GNN propagation part, while the readout module will take on more responsibility in the model reasoning process. To this end, we propose the Multi-Level Attention Mixture Network (Atten-Mixer), which leverages both concept-view and instance-view readouts to achieve multi-level reasoning over item transitions. As simply enumerating all possible high-level concepts is infeasible for large real-world recommender systems, we further incorporate SBR-related inductive biases, i.e., local invariance and inherent priority to prune the search space. Experiments on three benchmarks demonstrate the effectiveness and efficiency of our proposal.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset