Efficient Statistics, in High Dimensions, from Truncated Samples

09/11/2018
by   Constantinos Daskalakis, et al.
0

We provide an efficient algorithm for the classical problem, going back to Galton, Pearson, and Fisher, of estimating, with arbitrary accuracy the parameters of a multivariate normal distribution from truncated samples. Truncated samples from a d-variate normal N(μ,Σ) means a samples is only revealed if it falls in some subset S ⊆R^d; otherwise the samples are hidden and their count in proportion to the revealed samples is also hidden. We show that the mean μ and covariance matrix Σ can be estimated with arbitrary accuracy in polynomial-time, as long as we have oracle access to S, and S has non-trivial measure under the unknown d-variate normal distribution. Additionally we show that without oracle access to S, any non-trivial estimation is impossible.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset