Efficient Spectrum Sharing Between Coexisting OFDM Radar and Downlink Multiuser Communication Systems
This paper investigates the problem of joint subcarrier and power allocation in the coexistence of radar and multi-user communication systems. Specifically, in our research scenario, the base station (BS) provides information transmission services for multiple users while ensuring that its interference to a separate radar system will not affect the radar's normal function. To this end, we propose a subcarrier and power allocation scheme based on orthogonal frequency division multiple access (OFDM). The original problem consisting involving multivariate fractional programming and binary variables is highly non-convex. Due to its complexity, we relax the binary constraint by introducing a penalty term, provided that the optimal solution is not affected. Then, by integrating multiple power variables into one matrix, the original problem is reformulated as a multi-ratio fractional programming (FP) problem, and finally a quadratic transform is employed to make the non-convex problem a sequence of convex problems. The numerical results indicate the performance trade-off between the multi-user communication system and the radar system, and notably that the performance of the communication system is not improved with power increase in the presence of radar interference beyond a certain threshold. This provides a useful insight for the energy-efficient design of the system.
READ FULL TEXT